Фотосинтетические пигменты
Свойства пигментов
Еще в 1779 г. голландский врач Я. Ингенхауз в результате многочисленных опытов показал, что для фотосинтеза нужен не только свет, но и зеленые части растения. В 1818 г. французы П. Пелетье и А. Кавенту выделили из листьев зеленое вещество и назвали его хлорофиллом (от греч. chloros — зеленый и phyllon — лист). Ч. Дарвин считал хлорофилл самым интересным веществом на Земле, потому что с его помощью энергия Солнца превращается в химическую энергию органических веществ. По выражению К. А. Тимирязева, в этом состоит космическая роль зеленых растений. Хлорофилл — универсальный пигмент высших растений и водорослей.
Для фотосинтеза нужен не только хлорофилл, но и другие пигменты. Пигменты (от лат. pigmentum — краска, красящее вещество) — это вещества, избирательно поглощающие свет в видимой части спектра. При освещении белым светом их окраска определяется теми лучами, которые они пропускают или отражают. Если вещество не поглощает свет, то к нам в глаз приходят все лучи видимого спектра, и для нас это вещество — белое. Если вещество поглощает все лучи видимого спектра, то для нас оно — черное.
Способность пигментов поглощать свет связана с наличием в их молекулах правильно чередующихся двойных и одинарных связей. Это так называемые сопряженные двойные связи. Между двумя атомами, связанными двойной связью, находится четыре электрона. Если система состоит из сопряженных связей, то половина этих тт-электронов может свободно перемещаться вдоль всей системы. Поглотив квант света, такой электрон способен оторваться от молекулы пигмента, т.е. пигмент становится донором электронов для восстановления вещества.
Пигменты, участвующие в фотосинтезе высших растений, делятся на две группы: хлорофиллы — зеленые пигменты и каротиноиды — желтые. Есть два основных хлорофилла — хлорофилл a (^I^OslS^Mg) и хлорофилл b (C55H7o06N4Mg). Хлорофилл а — основной пигмент. Хлорофилл а — сине- зеленый, а хлорофилл b — желто-зеленый. Хлорофиллы не растворяются в воде, но хорошо растворимы в органических растворителях и легко изменяются под действием кислот, солей и щелочей.
По химической природе хлорофилл представляет собой сложный эфир дикарбоновой кислоты — хлорофиллина — и двух спиртов: метанола (СН3ОН) и фитола (С2оН39ОН):
На рис. 4.1 видно, что в основе молекулы хлорофилла лежит порфирин, состоящий из четырех пиррольных колец, соединенных метиловыми мостиками (—СН=). Хлорофилл относится к тетрапирролам. Именно четыре пиррольных кольца и метановые мостики создают сопряженные связи. В центре молекулы хлорофилла расположен атом магния, который соединен с четырьмя атомами азота пиррольных колец. Следовательно, хлорофилл относится к магний-порфиринам. Структурную формулу хлорофилла удалось узнать благодаря опытам Р. Вилыитеттера (Германия), за что последний был удостоен Нобелевской премии в 1915 г.
Рис. 4.1. Структурная формула хлорофилла а и хлорофилла Ь.
хлорофилла Ь в том случае, если метильная группа в пиррольном кольце II при третьем атоме углерода заменена на альдегидную группу — обведена кружком,
I—V — пиррольные кольца
Хлорофилл h отличается от хлорофилла а тем, что у него ко второму пиррольному кольцу присоединена не метальная, а альдегидная группа (см. рис. 4.1), поэтому хлорофилл b содержит кислорода на один атом больше, а водорода — на два атома меньше. В листе отношение хлорофилла а к хлорофиллу b составляет примерно 3:1.
Благодаря наличию сопряженных двойных связей с подвижными тг-электронами и атомов азота с неподеленными электронами молекула хлорофилла в интактной (неповрежденной) клетке способна к обратимым окислительно-восстановительным реакциям под действием света. Азот пиррольных колец может окисляться (отдавать электрон) или восстанавливаться (присоединять электрон).
Молекулу хлорофилла делят на две части: порфириновое ядро и фитоль- ный хвост. Фитол представляет собой полиизопреноидную цепь, состоящую из 20 атомов углерода. Фитольпый хвост в два раза длиннее, чем порфириновое ядро. Благодаря атомам кислорода, азота и магния порфириновое ядро гидрофильно. Фитольпый хвост — это углеводородная часть, следовательно, он гидрофобеи.
Таким образом, молекула хлорофилла полярна. Эта полярность молекулы обусловливает ее расположение в мембранах хлоропласта: фитоль- ный хвост располагается в гидрофобной части мембраны тилакоида, а порфириновое ядро — в гидрофильной. Имея разные свойства, обе части молекулы хлорофилла выполняют разные функции: порфириновое ядро поглощает свет, а фитольный хвост играет роль якоря, удерживающего молекулу хлорофилла в определенной части мембраны тилакоида.
В настоящее время роль магния в поглощении света связывают с тем, что с его помощью четыре пиррольных кольца располагаются в одной плоскости. Если молекула по какой-то причине приобретает другую форму, то взаимодействие тт-электронных облаков нарушается, цепь сопряжения разобщается, цвет пигмента изменяется или исчезает. С помощью магния молекулы хлорофилла соединяются с другими молекулами этого пигмента. Кроме того, магний нужен для сохранения молекулой хлорофилла своего возбужденного состояния. Магний участвует в образовании комплексов молекулы хлорофилла с другими молекулами пигментов, белками, липидами, фосфолипидами и другими компонентами хлоропласта.
Кроме пиррольных колец, в состав молекулы хлорофилла входит еще карбоциклическое кольцо (см. рис. 4.1) с высокоактивной кетогруппой. Предполагают, что эта группа участвует в окислении воды.
Полученный из листа хлорофилл легко реагирует с кислотами и щелочами. При взаимодействии со щелочью образуются два спирта — метанол и фитол — и щелочная соль хлорофилл и на:
Щелочь отрезает от молекулы хлорофилла фитольный хвост, в результате образующаяся соль теряет способность растворяться в бензине, но сохраняет зеленый цвет. Следовательно, растворимость хлорофилла в бензине, его гидрофобиость, обусловлена остатком фитола, а поглощение света связано с порфириновым ядром. В живом листе фитол может отщепляться от хлорофилла под действием фермента хлорофиллазы.
При действии слабой кислоты хлорофилл теряет зеленый цвет, образуется красно-бурое вещество феофитин, у которого атом магния замещен на два атома водорода:
В естественных условиях образование феофитина происходит при старении листьев, а также под влиянием неблагоприятных факторов, например осенью. В результате листья желтеют. В клетках появление феофитина вызвано увеличением проницаемости мембран и проникновением в хлоропласт кислого клеточного сока. Поскольку избирательная проницаемость мембран увеличивается под действием любого фактора, то и листья желтеют под действием низких и высоких температур, дефицита воды и ее избытка. Этот факт лишний раз доказывает важность этого свойства мембран.
В живых клетках большая часть хлорофилла связана с белком. Связь с белком определяет ориентацию молекул по отношению к плоскости мембраны и друг к другу, что имеет большое значение для поглощения и миграции энергии. Связь с белком определяет межмолекулярпые расстояния между пигментами.
Каротиноиды — полиизопреноиды красного, желтого и оранжевого цвета, производные изопрена: (С5Н8), содержащие 40 атомов углерода. Каротиноиды представляют собой цени, обладающие, как и хлорофиллы, сопряженными двойными связями. На обоих концах цепи находится иононовое кольцо (рис. 4.2). Каротиноиды присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов. Свое имя они получили от латинского названия моркови Daucus carota, в корнеплоде которой они содержатся в большом количестве. В зеленых листьях каротиноиды обычно незаметны из-за присутствия хлорофилла, но осенью, когда хлорофилл разрушается, окрашивают листья в желтый и оранжевый цвета.
Каротиноиды делятся на две группы: каротины и ксантофиллы. Каротины (С40Н5б) представляют собой углеводороды (тетратерпены), а ксантофиллы — содержат дополнительные гидроокси- и эпоксигруппы (см. рис. 4.2). У высших растений известны два каротина (а-каротин и p-каротин) и четыре ксантофилла: лютеин (С40Н56О2), зеаксантин (С40Н56О2), виолаксантин (С40Н56О4) и неоксантин (С40Н56О4). В листьях основными представителями являются p-каротин и лютеин.
P-Каротин (см. рис. 4.2) имеет два р-иононовых кольца (двойная связь между С5 и С6 атомами). а-Каротин отличается от p-каротина тем, что у него одно кольцо р-иононовое, а второе — е-иононовое (двойная связь между С4 и С5 атомами).
Лютеин — производное а-каротина, а зеаксантин — p-каротина. Эти ксантофиллы имеют по одной гидроксильной группе в каждом иононовом кольце. Виолаксантин имеет еще дополнительно два атома кислорода по двойным связям С5 и С6 Каротиноиды нерастворимы в воде, но хорошо растворяются в бензоле, бензине, ацетоне, сероуглероде.
Все пигменты поглощают свет избирательно. Так, если мы пропустим белый свет через раствор хлорофилла, а затем разложим его с помощью призмы, то увидим, что отдельные лучи спектра окажутся сильно поглощенными и на их месте будут черные полосы. Другие лучи будут лучше проходить через раствор. В результате мы получим так называемый спектр поглощения хлорофилла. Один квант света поглощается молекулой хлорофилла не чаще одного раза за 0,1 с на прямом солнечном свету.
Рис. 4.2. Структурные формулы каротиноидов
Хлорофиллы поглощают максимально красные и сине-фиолетовые лучи, хуже поглощают оранжевые, желтые и голубые (зеленый свет не поглощается, а проходит сквозь хлорофилл), и отражают дальние красные лучи. Небольшие различия в строении молекул хлорофилла а и b обусловливают некоторые различия в поглощении ими света (табл. 4.2).
Отличия в спектре поглощения (длина волны, им)
Фотосинтетические пигменты
Основными пигментами, осуществляющими поглощение квантов света в процессе фотосинтеза, являются хлорофиллы, пигменты Mg-порфириновой природы. Обнаружено несколько форм хлорофиллов, различающихся по химическому строению. Спектр поглощения различных форм хлорофиллов охватывает видимую, ближнюю ультрафиолетовую и ближнюю инфракрасную области спектра (у высших растений от 350 до 700 нм, а у бактерий — от 350 до 900 нм). Хлорофилл является основным пигментом и характерен для всех организмов, осуществляющих оксигенный, т. е. с выделением кислорода, фотосинтез. У зеленых и эвгленовых водорослей, мхов и сосудистых растений, кроме хлорофилла a, имеется хлорофилл b, содержание которого составляет 1/4—1/5 от содержания хлорофилла a. Это дополнительный пигмент, расширяющий спектр поглощения света. У некоторых групп водорослей, в основном бурых и диатомовых, дополнительным пигментом служит хлорофилл с, а у красных водорослей — хлорофилл d.У пурпурных бактерий содержится бактериохлорофилл a и b, а у зеленых серных бактерий наряду с бактериохлорофиллом a содержатся бактериохлорофиллы c и d. В поглощении световой энергии участвуют и другие сопровождающие пигменты — каротиноиды (пигменты полиизопреноидной природы) у фотосинтезирующих эукариот и фикобилины (пигменты с открытой тетрапиррольной структурой) у цианобактерий и красных водорослей. У галобактерий в плазматических мембранах обнаружен единственный пигмент — сложный белок бактериородопсин, близкий по химическому строению родопсину — зрительному пигменту сетчатки глаза.
В клетке молекулы хлорофилла находятся в различных агрегированных (связанных) состояниях и образуют пигмент-липопротеидные комплексы, и вместе с другими пигментами, участвующими в процессах поглощения квантов света и передачи энергии, связаны с белками фотосинтетических (тилакоидных) мембран, образуя так называемые светособирающие хлорофилл-белковые комплексы. По мере увеличения степени агрегации и плотности упаковки молекул максимум поглощения пигментов сдвигается в длинноволновую область спектра. Основная роль в поглощении световой энергии принадлежит коротковолновым формам, которые затем передают ее на более длинноволновые формы, участвующие в процессах миграции энергии. Присутствие в клетке серии спектрально близких форм пигментов обеспечивает высокую степень эффективности миграции энергии в реакционные фотохимические центры, где находятся наиболее длинноволновые формы пигментов, играющие роль так называемых энергетических ловушек.
В ходе световой стадии фотосинтеза образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФН, использующийся как восстановитель. В качестве побочного продукта выделяется кислород. В общем, роль световых реакций фотосинтеза заключается в том, что в световую фазу синтезируются молекула АТФ и молекулы-переносчики протонов, то есть НАДФ Н2.
Фотофосфорилирование- образование ATP в хлоропластах в ходе фотосинтеза.
Дата публикования: 2015-11-01 ; Прочитано: 1414 | Нарушение авторского права страницы
Фотосинтез
Типы питания
По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.
Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.
Фотосинтез
Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.
Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.
Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.
В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»
Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.
Светозависимая фаза (световая)
Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.
Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):
Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).
Образовавшиеся при фотолизе воды протоны (H + ) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.
При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:
Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД + превращается в восстановленную — НАДФ∗H2.
Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:
- Свободный кислород O2 — в результате фотолиза воды
- АТФ — универсальный источник энергии
- НАДФ∗H2 — форма запасания атомов водорода
Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.
Светонезависимая (темновая) фаза
Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.
При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.
Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.
Значение фотосинтеза
Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.
В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.
Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:
- Синтезируют органические вещества, являющиеся пищей для всего живого на планете
- Преобразуют энергию света в энергию химических связей, создают органическую массу
- Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
- Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение
Хемосинтез (греч. chemeia – химия + synthesis — синтез)
Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).
Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.
При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.
Помимо нитрифицирующих бактерий, встречаются:
- Серобактерии — окисляют H2S —> S 0 —> (S +4 O3) 2- —> (S +6 O4) 2-
- Железобактерии — окисляют Fe +2 —>Fe +3
- Водородные бактерии — окисляют H2 —> H +1 2O
- Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза
Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.
Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений (это происходит за счет клубеньковых бактерий на корнях бобовых растений).
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.